US009197486B2

a2z United States Patent (10) Patent No.: US 9,197,486 B2
Roskind 45) Date of Patent: *Nov. 24, 2015
(54) ADAPTIVE ACCELERATED APPLICATION 6,453,360 B1* 9/2002 Mulleretal. 709/250
STARTUP 6,542,991 B1* 4/2003 Joyetal. 712/228
6,560,511 B1* 5/2003 Yokoo etal. 700/245
. . . 6,571,278 B1* 5/2003 Negishietal. 709/213
(75) Inventor: James Roskind, Redwood City, CA 6,606,645 B1* 82003 Cohenetal. ..., 709/203
(Us) 6,647,534 Bl 11/2003 Graham
6,993,591 Bl 1/2006 Klemm
(73) Assignee: Google Inc., Mountain View, CA (US) 6,999,717 B2* 2/2006 Sprattetal.cccoovvrrrnni. 455/7
7,003,582 B2* 2/2006 Bassoetal.c.c....... 709/242
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 781 days. FOREIGN PATENT DOCUMENTS
Thi.s patent is subject to a terminal dis- WO WO 99/27680 6/1999
claimer.
OTHER PUBLICATIONS

(21) Appl. No.: 12/201,979

Cohen et al., “Prefetching the Means for Document Transfer: A New
(22) Filed: Aug. 29,2008 Approach for Reducing Web Latency”, IEEE INFOCOM 2000,
2000, pp. 854-863.
(65) Prior Publication Data (Continued)

US 2010/0057936 Al Mar. 4, 2010
Primary Examiner — Dung B Huynh

(51) Int.CL (74) Attorney, Agent, or Firm — Sterne, Kessler, Goldstein

HO4L 29/12 (2006.01) & Fox PLLC.
HO4L 29/08 (2006.01)
(52) US.CL (57) ABSTRACT

CPC ... HO04L 29/12066 (2013.01); HO4L 61/1511
(2013.01); HO4L 67/02 (2013.01); HO4L 67/28
(2013.01); HO4L 67/289 (2013.01); HO4L

67/2842 (2013.01)

Embodiments of the present invention include methods and
systems for accelerated application startup. A method for
accelerating startup of an application is provided. The method
includes persistently storing a number of uniform resource
locator (URL) hostnames based on one or more hostname
requests made by one or more users during use of the appli-
cation. The method further includes, upon startup of the appli-
cation, making a DNS lookup call for at least one of the stored

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited hostnames prior to a hostname request initiated by the appli-
U.S. PATENT DOCUMENTS cation, Wherein a resol.ution result fgr atleast one of the store.:d
hostnames is cached in the operating system DNS cache in
5,649,196 A * 7/1997 Woodhill et al. 711/148 preparation for the hostname request. A system for acceler-
g’;g’ggg ﬁ * g; }ggg (B}rend‘fl e& a{ [7097201 ating startup of an application is provided. The system
923, oodhand et al. . N
6016512 A * 1/2000 HUitema ..o 709/245 includes a hostname storage device, a DNS pre-fetcher and a
6,023,726 A 22000 Saksena startup DNS pre-cacher.
6,118,784 A * 9/2000 Tsuchiyaetal. 370/401
6,393,605 B1* 5/2002 Loomans 717/121 23 Claims, 5 Drawing Sheets
500

RECEIVE UNIFORM RESOURCE LOCATOR (URL) 502
HOSTNAMES FOR DNS PRE-FETCHRESOLUTION L~
PRIOR TO A USER HOSTNAME REQUEST FOR ANY OF
THE HOSTNAMES

MAKE A DNS LOOKUP CALL FOR AT LEAST ONE OF
THE HOSTNAMES THAT ARE NOT CACHEDBYAN | - 504
OPERATING SYSTEM DNS CACHE PRIOR TO THE

USER HOSTNAME REQUEST

|

DISCARD AT LEAST ONE IP ADDRESS PROVIDED BY
AN OPERATING SYSTEM DNS RESOLVER FOR THE 506
HOSTNAMES, WHEREIN A RESOLUTION RESULT FOR
AT LEAST ONE OF THE HOSTNAMES IS CACHED IN
THE OPERATING SYSTEM DNS CACHE IN
PREPARATION FOR THE USER HOSTNAME REQUEST

US 9,197,486 B2
Page 2

(56)

7,343,397

7,356,534

7,970,891

8,527,492
2001/0023459
2001/0043600
2001/0054045
2002/0133487
2003/0028591
2003/0037254
2003/0067923
2003/0093461
2003/0212732
2003/0229673
2003/0236771
2004/0107278
2005/0018249
2005/0027892
2005/0086194
2005/0114485
2005/0120180
2005/0235044
2005/0262248
2005/0286510
2006/0069746
2006/0129677
2006/0242242
2006/0248195
2006/0271642
2006/0294223
2007/0050491
2007/0061465
2007/0294419
2008/0177894
2009/0103126
2009/0171930
2009/0198779
2009/0222584
2009/0292696
2010/0011053
2010/0049872
2010/0114822

References Cited

U.S. PATENT DOCUMENTS

B2 *
B2

BL*
BL*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al

Al*
Al*
Al*
Al

Al*
Al*
Al*
Al

Al

Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al

Al*
Al*
Al

Al

Al*
Al*
Al*
Al

Al

3/2008
4/2008
6/2011
9/2013
9/2001
11/2001
12/2001
9/2002
2/2003
2/2003
4/2003
5/2003
11/2003
12/2003
12/2003
6/2004
1/2005
2/2005
4/2005
5/2005
6/2005
10/2005
11/2005
12/2005
3/2006
6/2006
10/2006
11/2006
11/2006
12/2006
3/2007
3/2007
12/2007
7/2008
4/2009
7/2009
8/2009
9/2009
11/2009
1/2010
2/2010
5/2010

Kochanskiccceovnne 709/218
Mohammed et al.

Kontothanssis et al. 709/224
Issa wovvvvennis ... 707/707
Asami 709/245
Chatterjee et al. .. 370/390
Shirasaka 707/204
Oshins et al. 707/5
Goloshubin et al. 709/203
Fischer et al. 713/200
Juetal. oo, 370/395.3
Suzuki et al.

Edahiro et al. 709/106
Malik 709/207
Becker 707/2
Emaru et al.

Miuraetal.cc...... 358/1.15
McCabe et al. . 709/253
Suzuki etal.ocoveenrn 707/1
McCollum

Schornbach et al.

Tazumacccocevenne, 709/217
Jennings et al. ... 709/228
Nakajima et al. ... 370/386
Davisetal.ccccuenenne. 709/218
Tamuracccoceeveenene, 709/227
Ezumi et al. . .. 709/206

. 709/226

Toumura et al. .
.. 709/217

Stavrakos et al. .

Glasgow et al. ... 709/224
Kataoka et al. 709/223
Kimetalccocennnn 709/226
Ulevitch

Jennings et al. 709/232
Park ..o 358/1.15
Vaughan et al.

Agrawal et al.

Josefsberg et al. 709/245
Shuster 707/5
Bhogaletal.c......... 709/203
Roskind

Pollock et al.

2010/0146415 Al
2010/0154055 Al 6/2010 Hansen
2012/0084852 Al* 42012 Ong

OTHER PUBLICATIONS

6/2010 Lepeska

726/12

Klemm, “WebCompanion: A Friendly Client-Side Web Prefetching
Agent”, IEEE Transactions on Knowledge and Data Engineering vol.
11, No. 4, Jul./Aug. 1999, pp. 577-594.

Wang, et al., “Prefetching in World Wide Web”, IEEE, 1996, pp.
28-32.

Bouras, C., etal., “Predictive Prefetching on the Web and its Potential
Impact in the Wide Area,” World Wide Web: Internet and Web Infor-
mation Systems, 2004, vol. 7, pp. 143-179; Kluwer Academic Pub-
lishers, The Netherlands.

PCT, Notification of Transmittal of the International Search Report
and the Written Opinion of the International Searching Authority, or
the Declaration, along with the PCT Written Opinion of the Interna-
tional Searching Authority for International Appln. No. PCT/
US2009/055375; International Filing Date: Aug. 28, 2009; 12 pages.
EP Patent Office, PCT—Notification of Transmittal of the Interna-
tional Search Report and the Written Opinion of the International
Searching Authority, or the Declaration, PCT—International Search
Report, and PCT—Written Opinion of the International Search
Authority; International Appln. No. PCT/US2009/054906; Interna-
tional Filing Date: Aug. 25, 2009, 13 pages.

Office Communication, dated Jan. 19, 2010, for U.S. Appl.
12/197,907, filed Aug. 25, 2008, 19 pages.

Office Communication, dated Jul. 8, 2010, for U.S. Appl.
12/197,907, filed Aug. 25, 2008, 19 pages.

Office Communication, dated Dec. 21, 2010, for U.S. Appl.
12/197,907, filed Aug. 25, 2008, 32 pages.

Office Communication, dated Apr. 12, 2011, for U.S. Appl.
12/197,907, filed Aug. 25, 2008, 3 pages.

Office Communication, dated Aug. 25, 2011, for U.S. Appl.
12/197,907, filed Aug. 25, 2008, 24 pages.

Office Communication, dated Dec. 14, 2010, for U.S. Appl.
12/415,471, filed Mar. 31, 2009, 11 pages.

Office Communication, dated Aug. 2, 2011, for U.S. Appl.
12/415,471, filed Mar. 31, 2009, 17 pages.

U.S. Appl. No. 12/415,471, filed Mar. 31, 2009, 24 pages.

No.
No.
No.
No.
No.
No.

No.

* cited by examiner

U.S. Patent

Nov. 24, 2015 Sheet 1 of 5 US 9,197,486 B2
100
0S DNS CACHE AN
110
INTERMEDIATE | | AUTHORITATIVE
FIREWALL SERVER SERVER
120 160 170
ISP MAIN DNS SERVER
140 180
FIG. 1
200
BROWSER ASYNCHRONOUS ~
DNS PRE-
210 FETCHER 994

OS DNS CACHE

110

DNS RESOLVER

230

FIG. 2

U.S. Patent Nov. 24, 2015 Sheet 2 of 5 US 9,197,486 B2

300

BROWSER

RENDERER 310

GATHERER HOSTNAME
QUEUE

312 316

210

ASYNCHRONOUS DNS HOSTNAME
PRE-FETCHER TABLE

220 320

FIG. 3

U.S. Patent Nov. 24, 2015 Sheet 3 of 5 US 9,197,486 B2

400

BROWSER

STARTUP DNS

PRE-CACHER HOSTNAME

STORAGE

410 420

210

ASYNCHRONOUS DNS
PRE-FETCHER

220

FIG. 4

U.S. Patent Nov. 24, 2015 Sheet 4 of 5 US 9,197,486 B2

500

RECEIVE UNIFORM RESOURCE LOCATOR (URL) 500
HOSTNAMES FOR DNS PRE-FETCH RESOLUTION |/~
PRIOR TO A USER HOSTNAME REQUEST FOR ANY OF
THE HOSTNAMES

MAKE A DNS LOOKUP CALL FOR AT LEAST ONE OF
THE HOSTNAMES THAT ARE NOT CACHED BY AN Ve 504
OPERATING SYSTEM DNS CACHE PRIOR TO THE

USER HOSTNAME REQUEST

\ 4

DISCARD AT LEAST ONE IP ADDRESS PROVIDED BY
AN OPERATING SYSTEM DNS RESOLVER FOR THE 506
HOSTNAMES, WHEREIN A RESOLUTION RESULT FOR 4
AT LEAST ONE OF THE HOSTNAMES IS CACHED IN
THE OPERATING SYSTEM DNS CACHE IN
PREPARATION FOR THE USER HOSTNAME REQUEST

FIG. 5

U.S. Patent

600

Nov. 24, 2015 Sheet 5 of 5

US 9,197,486 B2

PERSISTENTLY STORE A NUMBER OF UNIFORM
RESOURCE LOCATOR (URL) HOSTNAMES BASED ON
HOSTNAME REQUESTS MADE BY A USER DURING
USE OF THE APPLICATION

Vs 602

A 4

MAKE A DNS LOOKUP CALL FOR AT LEAST ONE OF
THE STORED HOSTNAMES PRIOR TO A HOSTNAME
REQUEST UPON STARTUP OF THE APPLICATION,
WHEREIN A RESOLUTION RESULT FOR AT LEAST ONE
OF THE STORED HOSTNAMES IS CACHED IN THE
OPERATING SYSTEM DNS CACHE IN PREPARATION
FOR THE HOSTNAME REQUEST

FIG. 6

US 9,197,486 B2

1

ADAPTIVE ACCELERATED APPLICATION
STARTUP

BACKGROUND

1. Field of the Invention

Embodiments of the present invention relate to applica-
tions and the World Wide Web.

2. Background Art

A web browser is a software application that allows a user
to view or download content that is available on a network,
such as on a website on the World Wide Web. Content may
include text, files, images, audio, video and personal commu-
nications. A browser may also allow a user to enter, upload, or
execute content. Browsers run on personal computers and
mobile devices. Commonly used browsers may presently
include, for example, FIREFOX, INTERNET EXPLORER,
SAFARI, and OPERA.

Browsers may use a number of protocols and standards
to obtain or manage content flow. Most browsers primarily
use hypertext transfer protocol (HTTP) to fetch content and
webpages. Webpages are located using a uniform resource
locator (URL), which identifies where the webpage may
be found. Webpages may be retrieved using the IP address
of the computer holding the webpage content. In order to
be more memorable and human friendly, an IP address
or hierarchy may be represented by a hostname (such as
www.google.com). A hostname is a domain name that has
one or more associated IP addresses. A hostname request is a
request by a user to navigate to a webpage using a URL
hostname. For example, a hostname request may include a
user clicking on a link on a web page or typing a hostname in
a URL bar. Hostnames and other information associated with
domain names may be resolved or translated to IP addresses
using the Domain Name System (DNS). This DNS resolution
system is sometimes referred to as the “phone book™ for the
Internet.

DNS resolution requires either looking in a local computer
cache or querying a set of DNS servers over the network. A
request for DNS resolution may also be known as a DNS
lookup call. DNS utilizes authoritative name servers to help
map domain names to I[P addresses in order to avoid having all
the information in a single, central DNS server. These and
other intermediate name servers may cache DNS resolution
information to shorten DNS resolution times.

For example, FIG. 1 illustrates an exemplary system 100
that performs DNS resolution. When network traffic is
required, UDP packets are sent to a DNS resolver, and even-
tually a UDP response is provided. DNS resolutions may
exist in a local cache, such as operating system DNS cache
110. If not, the next resolver is commonly LAN firewall 120,
which necessitates traffic from the firewall resolver to another
resolver, such as ISP 140, over network 130. The latency time
of two such round trips may presently be no less than 40 ms
compared to 0-3 ms when operating system DNS cache 110 is
the source of the resolution. If resolution information is not in
the cache of firewall 120 or ISP 140, other intermediate serv-
ers 160 may be queried over one or more networks 150. If the
hostname is yet to be resolved, authoritative server 170 or
main DNS server 180 will be queried and latency will be
further increased. Failures, delays and lost packets contribute
to accumulated latency that can commonly exceed 1 second
or longer. Longer latency times cause discomfort to users of a
web browser.

DNS resolution times can be reduced. When DNS resolu-
tion occurs for a website, cached results will make future
visits to a website quicker. For instance, a web page when first
visited may have a portion of its presentation latency attrib-

10

15

20

25

30

35

40

45

50

55

60

65

2

utable to DNS resolution, which could exceed 120 millisec-
onds. Future visits will get DNS queries from cache atno cost.

User-perceived latency may be reduced through DNS pre-
fetching. DNS pre-fetching resolves or fetches a variety of
hostnames through the DNS in advance of user activities,
anticipating that one of those name resolutions will probably
be useful in an upcoming user webpage or hostname request.
However, browsers currently do not do DNS pre-fetching for
a number of reasons. Engineers have not implemented tech-
niques for DNS pre-fetching in browsers, fearing that the
delicate complexity of the network stack would be compro-
mised. Also, engineers have thought that implementations
would have to be adapted for each different network applica-
tion or browser. Further, engineers have worried that any
additional network code, processing or complexity prior to a
user request would only further increase latency.

BRIEF SUMMARY

Embodiments described herein refer to systems and meth-
ods for domain name system (DNS) pre-caching. Embodi-
ments described herein also refer systems and methods for
DNS pre-caching for accelerating application startup.
According to an embodiment, a method for accelerating star-
tup of an application is provided. The method includes per-
sistently storing a number of uniform resource locator (URL)
hostnames based on one or more hostname requests made by
one or more users during use of the application. The method
also includes, upon startup of the application, making a DNS
lookup call for at least one of the stored hostnames prior to a
hostname request initiated by the application, wherein a reso-
lution result for at least one of the stored hostnames is cached
in the operating system DNS cache in preparation for the
hostname request.

According to another embodiment, a method for acceler-
ating startup of an application is provided. The method
includes receiving a number of stored uniform resource loca-
tor (URL)hostnames. The method also includes, upon startup
of'the application, making a DNS lookup call for at least one
of' the stored hostnames prior to a hostname request initiated
by the application. The method further includes discarding at
least one IP address provided by an operating system DNS
resolver for the stored hostnames, wherein a resolution result
for at least one of the stored hostnames is cached in the
operating system DNS cache in preparation for the hostname
request.

According to a further embodiment, a system for acceler-
ated application startup is provided. The system includes a
hostname storage device configured to persistently store a
number of uniform resource locator (URL) hostnames based
on one or more hostname requests made by one or more users
during use of the application. The system also includes a DNS
pre-fetcher configured to make a DNS lookup call for at least
one of the stored hostnames prior to a hostname request
initiated by an application for any of the stored hostnames,
wherein a resolution result for at least one of the stored
hostnames is cached in the operating system DNS cache in
preparation for the hostname request. The system further
includes a startup DNS pre-cacher configured to pass the
number of hostnames to the DNS pre-fetcher from the host-
name storage device upon startup of the application.

Further embodiments, features, and advantages of the
invention, as well as the structure and operation of the various
embodiments of the invention are described in detail below
with reference to accompanying drawings.

BRIEF DESCRIPTION OF THE FIGURES

Embodiments of the invention are described with reference
to the accompanying drawings. In the drawings, like refer-

US 9,197,486 B2

3

ence numbers may indicate identical or functionally similar
elements. The drawing in which an element first appears is
generally indicated by the left-most digit in the corresponding
reference number.

FIG. 1 is a diagram showing an existing system for DNS
hostname resolution, according to an embodiment of the
present invention.

FIG. 2 is a diagram of a system for DNS pre-caching,
according to an embodiment of the present invention.

FIG. 3 is a more detailed diagram of a system for DNS
pre-caching, according to an embodiment of the present
invention.

FIG. 4 is a diagram of a system for accelerating application
startup using DNS pre-caching, according to an embodiment
of the present invention.

FIG. 5 is a flowchart illustrating a method for DNS pre-
caching, according to an embodiment of the present inven-
tion.

FIG. 6 is a flowchart illustrating a method for accelerating
application startup using DNS pre-caching, according to an
embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

While the present invention is described herein with refer-
ence to illustrative embodiments for particular applications, it
should be understood that the invention is not limited thereto.
Those skilled in the art with access to the teachings provided
herein will recognize additional modifications, applications,
and embodiments within the scope thereof and additional
fields in which the invention would be of significant utility.

The goal of Domain Name System (DNS) pre-fetching is
to reduce user-perceived latency when surfing the Internet.
Perceived network code complexity has prevented an effec-
tive implementation of DNS pre-fetching in browsers. A sim-
pler implementation does not involve creating an additional
pre-fetching DNS cache, but rather “pre-warming up” an
existing DNS cache for actual browser network stack
accesses. A cache is considered “warm” if it happens to con-
tain a subset of data that later proves useful. Usually a cache
is warmed up by actual use in a process and not by a system
deliberately trying to pre-populate a cache. Loading a cache is
often expensive and cache size may be restricted, causing
some data to be evicted in favor of other data without proof of
utility of the new data. With DNS caching, according to many
embodiments of the present invention, cache size is not a
significant restriction.

One or more parallel threads may be executed to perform
hostname-to-IP address DNS resolution. Such a thread can
process a hostname, as though it were looking the IP address
up, but not actually obtain and use the IP address to render the
web page for the IP address. In fact, results of such lookups
may be discarded, or deleted, in some implementations.
Instead, the act of calling a DNS query function, which is
often passed to the operating system, causes IP resolutions to
be stored in a DNS lookup system’s cache. This is “pre-
caching”. Later, before a DNS cache expires, a thread can
fetch the resource (e.g., URL) and the underlying cache will
cause that fetch to be expedited. As a result, there will be little
or no latency delay in obtaining a DNS resolution since it is
already in the cache. This leads to dramatic savings in later
URL navigation. Embodiments of the present invention
include methods and systems for domain name system (DNS)
pre-caching.

According to a feature, DNS resolutions are pre-cached as
a “side effect” of parallel DNS queries. As described above,
parallel threads may be executed to do DNS resolution as

15

20

30

35

40

45

50

4

though they were looking the IP addresses up. This action, as
a “‘side-effect”, loads a process and local cache (e.g. operating
system cache) with DNS resolutions. Because such an imple-
mentation benefits from the “side-effect” of a normal DNS
resolution query, it avoids the complexity of interacting with
the traditional network stack that is resolving names. Latency
measurements have produced significant and surprising posi-
tive results.

Hostnames for DNS pre-caching may be selected or gath-
ered in various ways, increasing the utility of DNS pre-cach-
ing. Such DNS pre-caching can make better use of extra CPU
time that exists while a browser is waiting for a user to select
alink. DNS pre-caching may also be used to accelerate appli-
cation startup. Such utilizations of DNS pre-caching will be
discussed in further embodiments herein.

FIG. 2 illustrates an exemplary system 200 for DNS pre-
caching, according to an embodiment. System 200 includes
browser 210, asynchronous DNS pre-fetcher 220, operating
system DNS cache 110 and DNS resolver 230. These com-
ponents may be coupled directly or indirectly, such as over a
network. DNS resolver 230 may be coupled to one or more
networks 130. According to an embodiment, browser 210
may include any device, application or module that enables a
user or computer to navigate and/or retrieve data from another
data source, typically over a network. Browser 210 may
include any conventional browser including but not limited to
for example, FIREFOX available from Mozilla Foundation
Inc., INTERNET EXPLORER available from Microsoft
Corp., SAFARI available from Apple Computer, Inc., and
OPERA available from Opera Software ASA. Browser 210
may also be a multi-process browser as described in “Multi-
Process Browser Architecture,” by Fisher et al., U.S. Provi-
sional Appl. No. 61/052,719, filed May 13, 2008. According
to a further embodiment, browser 210 may also be configured
to use any number of protocols, including protocols such as
HTTP.

Browser 210 may exist within or be executed by hardware
in a computing device. For example, browser 210 may be
software, firmware, or hardware or any combination thereof
in a computing device. A computing device can be any type of
computing device having one or more processors. For
example, a computing device can be a workstation, mobile
device (e.g., a mobile phone, personal digital assistant, or
laptop), computer, game console, set-top box, kiosk, embed-
ded system or other device having at least one processor and
memory.

According to an embodiment, browser 210 may be config-
ured to receive one or more uniform resource locator (URL)
hostnames for DNS pre-fetch resolution prior to a user host-
name request for any of the one or more URL hostnames. A
user hostname request may include, but is not limited to,
clicking on a link, or pressing “Enter” or “Return” upon
entering or selecting a URL address. A user hostname request
may be any action or gesture by a user confirming or com-
mitting to a URL address or hostname. Browser 210 may also
be configured to make a DNS lookup call for at least one of the
one or more URL hostnames that are not cached by a DNS
cache prior to the user hostname request. Browser 210 may be
further configured to discard at least one IP address provided
by a DNS resolver for the one or more URL hostnames, where
a resolution result for at least one of the one or more URL
hostnames is cached in a DNS cache in preparation for the
user hostname request. According to a further embodiment,
browser 210 may provide one or more URL hostnames to
asynchronous DNS pre-fetcher.

According to an embodiment, asynchronous DNS pre-
fetcher 220 may be configured to make a DNS lookup call for

US 9,197,486 B2

5

one or more uniform resource locator (URL) hostnames and
discard an IP address for at least one of the URL hostnames
prior to a user hostname request for any of the URL host-
names, where a resolution result for at least one of the URL
hostnames is cached in a DNS cache in preparation for the
user hostname request. Many operating systems provide DNS
resolution service asynchronously. That is, rather than calling
a function and “waiting” until it returns, a function may be
called and it will “call back” when it has an answer. As a
result, it can be called with many requests (while prior
requests are still pending).

Asynchronous DNS pre-fetcher 220 may act in a similar
asynchronous fashion. Also, DNS pre-fetcher 220 may act as
amodule separate from the network stack for DNS resolution.
This may lead to a simpler implementation.

If DNS resolutions are not cached in OS DNS cache 110,
hostnames may be provided to DNS resolver 230. DNS
resolver 230 may require further queries over one or more
networks 130 to resolve the hostnames provided by DNS
pre-tetcher 220.

FIG. 3 illustrates an exemplary system 300 for DNS pre-
caching, according to an embodiment. System 300 includes
browser 210, asynchronous DNS pre-fetcher 220 and host-
nametable. System 300 may also include renderer 310, which
may or may not exist in browser 210. These components may
be coupled together directly or indirectly.

According to an embodiment, hostname table 320 may be
a data structure configured to store DNS pre-fetch informa-
tion for one or more URL hostnames. DNS pre-fetch infor-
mation may include, but is not limited to: DNS resolution
tracking information (is DNS task queued, assigned,
resolved, etc.?) for each hostname; transition time for such
tasks; when was the hostname resolved last; how many other
resolutions have taken place since a hostname’s last resolu-
tion (useful for estimating cache eviction); and a central hash
table for hostnames and DNS resolution events. DNS pre-
fetch information may also include information for services
relating to: startup and teardown, enabling and disabling DN'S
pre-fetching, providing global entry points (requiring no con-
text or instance) for DNS resolution requests, and monitoring
and measuring performance of actual network stack resolu-
tions required for web navigation. Any combination of the
above DNS pre-fetch information may be included in other
components of system 300. According to a further embodi-
ment, a cache eviction time may be determined by DNS
pre-tetcher 220 based on DNS pre-fetch information in host-
name table 320. DNS pre-fetcher 220 may be further config-
ured to make DNS lookup calls for only the one or more URL
hostnames that have not had a DNS lookup call within a
determined cache eviction time.

Renderer 310 may be a module that displays (or renders)
data, such as an HTML page, according to an embodiment.
Renderer 310, in the course of analyzing a page, may ask the
environment about its context. One example of context is
whether a link was already visited. Such context may be used
to identify possible links to gather for pre-fetching. Accord-
ing to an embodiment, renderer 310 may be configured to
gather hostnames.

Hostnames gathered or captured by renderer 310 may be
placed, either temporarily or persistently, into hostname
queue 316 by renderer 310 or browser 210, according to an
embodiment. Hostname queue 316 may be a data structure or
an allocation in memory. Hostname queue 316 may exist in or
be provided by renderer 310 or browser 210. Hostname queue
316 may be dynamic or static. According to an embodiment,
when an individual or dedicated worker thread is available, it
may gather one or more hostnames from hostname queue 316

10

15

20

25

30

40

45

50

55

60

65

6

for processing. A browser or renderer worker thread may
make a blocking DNS lookup call for an assigned hostname
and wait until a resolution is returned. Once there is a reso-
Iution (or name-not-found result), the worker thread may
update hostname information in hostname table 320. Such
information can prevent pre-fetching the same name too
often. If an IP address is provided by DNS resolver 230, it
may be discarded, according to a further embodiment. Hav-
ing a collection of worker threads will prevent a slow DNS
resolution from holding up quicker asynchronous resolutions
from the remainder of hostname queue 316. Browser 210,
DNS pre-fetcher 220, or renderer 310 may perform tasks
described above with one or more parallel threads.

Hostnames for DNS pre-fetching may be selected or deter-
mined in a number of ways. According to an embodiment,
browser 210 or renderer 310 may include gatherer 312. Gath-
erer 312 may be configured to gather one or more URL
hostnames from one or more URL links in a web page prior to
auser selecting a URL link in the web page. A web page may
be scanned for links on the page. In some cases, all links on a
page may be gathered. Limitations can be placed on how
many hostnames are gathered from a webpage in cases where
there are a large number of links. In these cases, renderer 310
may be configured to limit URL hostnames that are passed
based upon a number of URL links on a webpage. It could be
counter-productive if valuable hostnames where evicted from
the DNS cache by hostname links that are less likely to be
selected. In other cases, gatherer 312 may be configured to
avoid duplicate hostnames. According to an embodiment,
anchor tags (links that are colored to indicate whether the link
was visited or not) may be parsed and hostnames extracted.
According to a further embodiment, gatherer 312 may gather
hostnames as seen on a “results” page from a search.

According to an embodiment, gatherer 312 may be config-
ured to gather one or more URL hostnames from one or more
predicted hostnames based upon entering activity in a URL
address bar prior to a user completely entering a hostname.
Entering activity may include a user typing a URL address in
the address bar. Entering activity may also include plausible
hostnames that are predicted or proposed to a user based on
autocompletion logic, while the user is typing. Autocomple-
tion proposals may be based on previously entered URLs,
query submissions, or immediate termination of typing by the
user (completion of explicit user URL entry). Each proposed
hostname may be processed and resolved before a user final-
izes his or her entry, whether or not a user ultimately agrees
with a self-completing prediction.

Some links and advertisements may not contain a true URL
link but only the URL of a server redirector. According to an
embodiment, a link tag on a page may be augmented with a
hint to the browser that a given domain will be visited.
Observed link tags may cause a corresponding hostname to be
inserted into hostname queue 316. According to a further
embodiment, a relationship value in a link tag associated with
at least one of the one or more URL hostnames may be
replaced. A replacement value may be associated with
DNS pre-fetching. For example, a link tag may appear as
“<link rel="DNS-pre-fetch” hret=http://www.hostnameto-
prefeth.com/> Such actions may be performed by renderer
310, gatherer 312, or browser 210.

According to an embodiment, gatherer 312 may be config-
ured to gather one or more URL hostnames based upon one or
more omni-box suggestions that appear based on user activity
prior to a user selecting an omni-box suggestion. An omni-
box is a query box provided by browser 210 that assists with
routine surfing. An omni-box may suggest to a user (via a
highlighted line) that a certain course of action be taken. For

US 9,197,486 B2

7

example, actions may include visiting a link that was visited
in the past, doing a search provider query, or visiting a new
URL. When such a suggestion is made, a potential URL is
constructed. That URL hostname may be gathered by gath-
erer 312. According to a further embodiment, a user may enter
a search query in an onmi-box. A hostname may be fully
resolved between when a user enters a URL and when he or
she presses “Enter”. When browser 210 determines a search
will be performed, it forms a search URL and a search pro-
vider’s hostname is gathered by gatherer 312. In some cases,
search time may be reduced by 120 ms.

According to an embodiment, gatherer 312 may be config-
ured to gather one or more URL hostnames based upon one or
more URL links on a web page that a user has moused over
but has not selected. In some cases, this may be based on a
period of time in which a user has a mouse pointer resting on
a link or in proximity to a link. The hostname for the link may
be pre-fetched while a user considers clicking on the link.

According to a further embodiment, renderer 310 may be
configured to pass one or more URL hostnames to DNS
pre-fetcher 220 or browser 210. Hostnames may also be
passed in an array. In another embodiment, each individual
array transmission can be guaranteed to be internally dupli-
cate free. Renderer 310 may be configured to avoid providing
duplicate hostnames. Renderer 310 may also be configured to
avoid providing variations on hostnames that would lead
DNS pre-fetcher 220 to make superfluous DNS lookup calls.
According to another embodiment, an API may pre-populate
a DNS cache.

DNS pre-caching may be used for other purposes such as
reducing application startup time. FIG. 4 illustrates an exem-
plary system 400 for accelerating application startup, accord-
ing to an embodiment. System 400 includes browser 210,
startup DNS pre-cacher 410, asynchronous DNS pre-fetcher
220 and hostname storage 420. These components may be
coupled together directly or indirectly. Startup DNS pre-
cacher 410 and hostname storage 420 may exist in browser
210.

According to an embodiment, hostname storage 420 may
be a storage device configured to persistently store a number
of uniform resource locator (URL) hostnames based on one
or more hostname requests made by one or more users during
use of an application. Hostname storage 420 may store host-
names requested by one or more applications. The selection
ot hostnames to be stored may be an adaptive process. Startup
DNS pre-cacher 410 may monitor all URL fetches that are
made during startup that involve network activity. According
to a further embodiment, only a select subset of URL fetches
may be monitored. For example, monitoring may exclude
resolutions that are already cached and require no network
activity. Monitoring may also exclude resolutions of names
noted in a pre-specified list of names to ignore. Startup DNS
pre-cacher may or may not be a component of browser 210.
The number of stored hostnames may or may not be prede-
termined.

According to an embodiment, DNS pre-cacher 410 may
store a number of hostnames based upon a number of first
hostnames requested by one or more users following startup
of'the application. For example, the first ten hostnames found
in URLs may be stored in hostname storage 420. According to
a further embodiment, a variable number of hostnames may
be stored in hostname storage 420. For example, all host-
names resolved in the first N seconds, such as the first 10
seconds, may be stored. As another example, all hostnames
requiring resolution in the first 5 minutes, with resolution
time greater than some significant delay, such as 500 ms, may

5

10

15

20

25

30

40

45

50

55

60

65

8

be stored. In some embodiments, a variable number of host-
names may be bounded by a fixed limit, for example, not to
exceed 10 names.

According to another example, a number of hostnames
based upon a number of most recent hostnames requested by
one or more users during use of the application may be stored
in hostname storage 420. In a further example, a number of
hostnames based upon a number of most frequently requested
hostnames by one or more users during use of the application
may be stored. In another example, a number of hostnames
based upon any combination of first hostnames following
startup, most recent hostnames, or most frequent hostnames
requested by one or more users during use of the application
may be stored. According to another embodiment, some host-
names stored in hostname storage 420 may be prepro-
grammed hostnames. Stored hostnames may also be gener-
ated or received from another application.

According to an embodiment, startup DNS pre-cacher 410
may be configured to pass a number of hostnames to asyn-
chronous DNS pre-fetcher 220 from the hostname storage
device upon startup of the application. For example, such a
start up may be when the application is opened or selected to
run. This start up may be the first time the application is
started. This start may also be a startup subsequent to a clos-
ing of the application (also called a next start up). In other
words, an earlier run of the application may have occurred
and the application may have been previously closed. In this
case, a start up may be a next start up subsequent to a closing
of'the application. DNS pre-fetcher 220 may be configured to
make a DNS lookup call for at least one stored hostname prior
to a hostname request for any of the stored hostnames,
wherein a resolution result for at least one of the stored
hostnames is cached in the operating system DNS cache in
preparation for the hostname request. According to an
embodiment, hostname requests may be initiated by an appli-
cation. An application may perform DNS lookups during
startup in anticipation of hostname requests by the applica-
tion. Such hostname requests may take place towards the end
of'the startup or at some time following startup. DNS lookups
may also be made by the application in advance of any pre-
dicted user hostname requests. According to another embodi-
ment, hostname requests may initiated by the application in
response to a user gesture or a user hostname request. Accord-
ing to a further embodiment, DNS pre-fetcher 220 may be
configured to discard at least one 1P address provided by an
operating system DNS resolver for stored hostnames, where
a resolution result for at least one of the stored hostnames is
cached in the operating system DNS cache in preparation for
the hostname request.

Embodiments described herein for accelerated application
startup reduce real-world application startup time. Without
such an optimization, a user would first wait for the applica-
tion to start, and then wait for a page to be fetched (including
DNS lookup). Resolving hostnames in advance improves the
application experience for the user. Hostnames that can be
pre-fetched may also include a user’s home page, domains
commonly used in that page, or hostnames that are used in
number of standard tabs that are typically loaded at startup.
DNS pre-cacher 410 or DNS pre-fetcher 220 may be config-
ured to perform tasks using one or more parallel threads.

FIG. 5 illustrates an exemplary method 500 for DNS pre-
caching, according to an embodiment. In step 502, URL
hostnames for DNS pre-fetch resolution may be received
prior to a user hostname request for any hostnames. In step
504, a DNS lookup call for at least one of the URL hostnames
that are not cached by a DNS cache is made prior to a user
hostname request. In step 506, at least one IP address pro-

US 9,197,486 B2

9

vided by a DNS resolver for one or more URL hostnames may
be discarded, where a resolution result for at least one of the
URL hostnames is cached in a DNS cache in preparation for
a user hostname request. According to an embodiment, steps
502, 504 and 506 may be performed by DNS pre-fetcher 220.

FIG. 6 illustrates an exemplary method 600 for accelerated
application startup, according to an embodiment. In step 602,
a number of uniform resource locator (URL) hostnames
based on one or more hostname requests made by one or more
users during use of the application are persistently stored.
According to an embodiment, DNS pre-cacher 410 may be
configured to perform step 602. Hostnames may be stored in
hostname storage 420. In step 604, a DNS lookup call for at
least one of the stored hostnames may be made prior to a
hostname request initiated by the application, where a reso-
lution result for at least one of the stored hostnames is cached
in operating system DNS cache in preparation for the host-
name request. This may be performed upon startup of the
application. According to a further embodiment, this startup
may be a next startup subsequent to a closing of the applica-
tion. According to an embodiment, step 604 may be per-
formed by DNS pre-fetcher 220. According to another
embodiment, step 604 may perform a DNS lookup call in
preparation for a user hostname request.

Aspects of the present invention, for exemplary system
200, system 300, system 400, method 500 and/or method 600
or any part(s) or function(s) thereof may be implemented
using hardware, software modules, firmware, tangible com-
puter readable media having instructions stored thereon, or a
combination thereof and may be implemented in one or more
computer systems or other processing systems.

The present invention has been described above with the
aid of functional building blocks illustrating the implemen-
tation of specified functions and relationships thereof. The
boundaries of these functional building blocks have been
arbitrarily defined herein for the convenience of the descrip-
tion. Alternate boundaries can be defined so long as the speci-
fied functions and relationships thereof are appropriately per-
formed.

The foregoing description of the specific embodiments will
so fully reveal the general nature of the invention that others
can, by applying knowledge within the skill of the art, readily
modify and/or adapt for various applications such specific
embodiments, without undue experimentation, without
departing from the general concept of the present invention.
Therefore, such adaptations and modifications are intended to
be within the meaning and range of equivalents of the dis-
closed embodiments, based on the teaching and guidance
presented herein. It is to be understood that the phraseology or
terminology herein is for the purpose of description and not of
limitation, such that the terminology or phraseology of the
present specification is to be interpreted by the skilled artisan
in light of the teachings and guidance.

The breadth and scope of the present invention should not
be limited by any of the above-described exemplary embodi-
ments, but should be defined only in accordance with the
following claims and their equivalents.

What is claimed is:
1. A method for accelerating startup of a web browser
running on a computing device, comprising:

persistently storing, by the web browser running on the
computing device, a number of uniform resource locator
(URL) hostnames in a hostname storage of the web
browser and based on hostname requests made by one or
more users during a prior use of the web browser;

in response to an initial execution of an instance of the web
browser and prior to a hostname request for any of the
stored URL hostnames:

30

45

55

10

performing, by the web browser, hostname-to-IP address
DNS resolutions for the stored URL hostnames;

receiving, by the web browser, resolution results for the
stored URL hostnames in response to the performing
step, the resolution results including IP addresses and
hostname information for the stored URL hostnames;

caching, by the web browser, the hostname information for
the received resolution results of the hostname-to-IP
address DNS resolutions in an operating system DNS
cache in preparation for the hostname request of the
stored URL hostnames; and

discarding, by the web browser, the IP addresses of the

received resolution results, such that subsequent host-
name requests of the stored URL hostnames are pro-
cessed (i) utilizing the hostname storage and operating
system DNS cache and (ii) separate from network activ-
ity.

2. The method of claim 1, wherein the performing, caching,
and discarding steps are performed by parallel threads of the
web browser.

3. The method of claim 1, wherein the performing step
further comprises:

inserting the stored URL hostnames into a work queue; and

performing a hostname-to-IP address DNS resolution for a

next hostname in the work queue with an available work
thread within a predetermined cache eviction time.
4. The method of claim 1, wherein the storing step further
comprises storing resolution information for the hostname in
ahostname table having a hash table for hostnames and DNS
resolution events.
5. The method of claim 1, wherein the performing step
includes making a DNS lookup call for a predicted hostname
based on autocompletion logic or omnibox suggestions while
a user is typing the hostname request and wherein the per-
forming step is performed before the hostname request is
finalized.
6. The method of claim 1, wherein the storing step further
comprises storing the number of URL hostnames based upon
a number of first hostnames requested by the web browser
following initial execution ofthe instance of the web browser.
7. The method of claim 1, wherein the storing includes
avoiding storing of duplicate URL hostnames.
8. The method of claim 1, wherein the storing step further
comprises storing the number of URL hostnames in a host-
name queue based upon replaced values in link tags associ-
ated with the number of hostnames.
9. The method of claim 1, wherein the storing step further
comprises storing the number of URL hostnames based upon
any combination of first hostnames following startup, most
recent hostnames, or most frequent hostnames requested by
one or more users during use of the web browser.
10. The method of claim 1, further comprising discarding
each IP address provided at startup by an operating system
DNS resolver for the respective stored hostname.
11. A method for accelerating startup of a web browser
running on a computing device, comprising:
receiving, by the web browser running on the computing
device, a number of stored uniform resource locator
(URL) hostnames;

inresponse to an initial execution of an instance of the web
browser and prior to a hostname request for any of the
stored URL hostnames:

performing, by the web browser, hostname-to-IP address

DNS resolutions for the stored URL hostnames;
receiving, by the web browser, resolution results for the
stored URL hostnames in response to the performing

US 9,197,486 B2

11

step, the resolution results including IP addresses and
hostname information for the stored URL hostnames;

caching, by the web browser, the hostname information for
the received resolution results of the hostname-to-IP
address DNS resolutions in an operating system DNS
cache in preparation for the hostname request of the
received URL hostnames; and

discarding, by the web browser, the IP addresses received

in response to the hostname-to-IP address DNS resolu-
tions such that subsequent hostname requests of the
stored URL hostnames are processed (i) utilizing the
operating system DNS cache and (ii) separate from net-
work activity.

12. The method of claim 11, wherein the stored hostnames
are preprogrammed hostnames.

13. The method of claim 11, wherein the stored hostnames
are generated by another application.

14. A system for accelerating startup of a web browser
comprising:

a hostname storage device configured to persistently store

a number of uniform resource locator (URL) hostnames
based on one or more hostname requests made by one or
more users during a prior use of the web browser;

a DNS pre-fetcher configured to

in response to an initial execution of an instance of the
web browser and prior to a hostname request for any
of the stored URL hostnames:

perform hostname-to-IP address DNS resolutions for
the stored URL hostnames;

receive resolution results for the stored URL hostnames
in response to the hostname-to-IP address DNS reso-
lutions, the resolution results including IP addresses
and hostname information for the stored URL host-
names;

cache the hostname information for the received resolu-
tion results of the hostname-to-IP address DNS reso-
lutions in an operating system DNS cache in prepa-
ration for the hostname request of the stored URL
hostnames; and

discard the IP addresses of the received resolution
results, such that subsequent hostname requests of the
stored URL hostnames are processed (i) utilizing the
hostname storage and operating system DNS cache
and (ii) separate from network activity; and

a startup DNS pre-cacher configured to pass the number of

URL hostnames to the DNS pre-fetcher from the host-
name storage device upon execution of the instance of
the web browser.

15. The system of claim 14, wherein the DNS pre-fetcher
and the DNS pre-cacher are configured to operate using par-
allel threads of the web browser.

16. The system of claim 14, further comprising a hostname
table having a hash table for host names and corresponding
DNS resolution events relating to providing global entry
points for DNS resolution results, monitoring and measuring
performance of actual network stack resolutions for web
navigation, or DNS task assignments.

17. The system of claim 14, wherein the DNS pre-cacher is
further configured to store the number of URL hostnames
based upon a number of first hostnames requested by one or
more users following initial execution of the instance of the
web browser.

18. The system of claim 14, wherein the DNS pre-cacher is
further configured to store the number of URL hostnames
based upon a number of first hostnames requested by the web
browser following initial execution of the instance of the web
browser.

15

20

25

35

40

45

50

55

60

65

12

19. The system of claim 14, wherein the DNS pre-cacher is
further configured to store the number of URL hostnames
based upon a number of most frequently requested hostnames
by one or more users during use of the web browser.

20. The system of claim 14, wherein the DNS pre-cacher is
further configured to store the number of URL hostnames
based upon any combination of first hostnames following
initial execution of the instance of the web browser, most
recent hostnames, or most frequent hostnames requested by
one or more users during use of the web browser.

21. The system of claim 14, wherein the DNS pre-fetcher is
further configured to discard each IP address provided for a
respective hostname at initial execution of the web browser,
wherein each [P address is not retained by the web browser at
initial execution.

22. A method for accelerating startup of an application
running on a computing device, comprising:

persistently storing a number of uniform resource locator
(URL) hostnames based on one or more hostname
requests made by one or more users during use of the
application;

upon startup of the application, performing a DNS lookup
call for at least one of the stored hostnames prior to a
hostname request initiated by the application after star-
tup, wherein a resolution result provided by a DNS
resolver at startup for the at least one stored hostname is
cached in an operating system DNS cache in preparation
for the hostname request, the resolution result associated
with IP addresses corresponding to the stored hostnames
and wherein the performing further comprises: making a
DNS lookup call for a predicted hostname based on
autocompletion logic or omnibox suggestions while a
user is typing the hostname request and wherein the
performing step is performed before the hostname
request is finalized; and

discarding the IP addresses corresponding to the host-
names while maintaining the cached resolution result
provided by the DNS resolver at startup for the at least
one stored hostname.

23. A system for accelerating startup of an application

comprising:
a hostname storage device configured to persistently store
a number of uniform resource locator (URL) hostnames
based on one or more hostname requests made by one or
more users during use of the application;
a DNS pre-fetcher configured to:
make a DNS lookup call for at least one of the stored
hostnames prior to a hostname request initiated by the
application for any of the stored hostnames and

discard IP addresses corresponding to the hostnames
while maintaining a cached resolution result provided
by a DNS resolver at startup for the at least one stored
hostname, wherein the resolution result provided by
the DNS resolver at startup for the at least one stored
hostname is cached in the operating system DNS
cache in preparation for the hostname request;

a startup DNS pre-cacher configured to pass the number of
hostnames to the DNS pre-fetcher from the hostname
storage device upon startup of the application; and

a memory comprising a hostname table having a hash table
for host names and corresponding DNS resolution
events relating to providing global entry points for DNS
resolution results, monitoring and measuring perfor-
mance of actual network stack resolutions for web navi-
gation, or DNS task assignments.

#* #* #* #* #*

